NATURAL CONVECTION IN A TURBULENT BOUNDARY
LAYER AT A WALL WITH VARIABLE TEMPERATURE

V. N. Bronshtein UDC 517.9:532/533
The problem of natural convection in a turbulent bowmdary layer at a wall with variable
temperature (or thermal flux) is solved by the integrals method,

The equations of a steady-state boundary layer at a wall whose radius of curvature may be dis-
regarded relative to the thickness of this boundary layer can be written as
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Here 0 =T—-Te.
The boundary conditions are
’ Yy=0, g=¢,(x) or 8=0,(x); u=0v=0;, y=8 wu=0; 0=0. @)

For laminar flow with 8y, =x" or Qy =X this problem has been analyzed in [3, 4]. For turbulent
flow this problem has been analyzed with the assumption that 6y = const [2], gy =const [1, 5], or qy
= const and g ~ x [5].

Integrating Eq. (1) with respect to y from 0 fo 6 yields [2]
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It is assumed here that the thicknesses of the dynamic and of the thermal boundary layer are of the same
order of magnitude, i.e., that Pr ~ 1,

We will stipulate the velocity profile u and the temperature profile 6 as follows:

u=wPy (i 0=0,P, (0  n= L. (4)

Inserting (4) into (3), we have
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Equations (5) can be solved numerically if 6, (x), qw(x), Ty(x), and the initial values of u and 6 are known,
An analytical solution is possible for several forms of the 6y, (x) function.

We will seek the solution to (5) in the form
w =uz®, 8=0zm" 8,=8072 g=4g?, {7)

where z = (1L + x—x,) for a boundary layer with a nonzero initial thickness or z =x for a boundary layer
with a zero initial thickness, Then expressions (5) yield
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In order to close system (8), it is necessary to add a relation for 7y, and qy. Let us express 7y as in [2]:
7, = Bpu‘-l’( A ) : 9)
14,0

with coefficient B and exponent s determined experimentally. In order to find the exponents k, m, and p,
it is necessary to stipulate g, as follows:

qw = qu(, (IO)
or to use the Reynolds analogy [2]
o _ By (11)
Tw Uy

Both methods yield the same result:
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With the exponent r of the thermal flux function known, one can find the exponents «, p, and m of finctions
Wy, 6y, and &, respectively, If the 6y function is given, then Egs. (12) can be rewritten in terms of p in-
stead.

We will write (11) as in [2]:
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and then insert (9) and (13) into system (8) so that for z =1 we obtain

vsu(!)—s 6{)_560 2p—les-—ms-{—k (1 3)
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Here ¢y =m +2kanda;=m +k +p.
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If the solution to Eq. (5) is sought in the form

uy = uyexp (k2); 8 ==95,exp(mz); 0, =0,exp(p2); |
(15

g = goexp(f2); g = Goexp(ra),

then we obtain formulas analogous to (12);

_ 1+s , 145
34+9s 3492

242t (16)
3425 3+ 2s

. —sr st

T 342 3+49

In this case, for determininé 0, Yy, 0y, and gy we have a system which becomes identical to (14) at z =0

Solving system (14), we find ,, uy, and q, as functions of 00:
=2 —s
8, ——a1Pr3+35 G (14 q, prd )
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where the constant coefficients a,, a,, 2;, and a, are
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If the thermal flux q4 is given, then we obtain analogous formulas:

5—2 2 s

6 = pr3+2s (G * 3+25 (1 + a, pr?)3+2s;
1+3$ l+s 2_ _ s (19
ty = ¢, Pr 20Ty (Gr) 3 (1 1 g, Pr® ) 5P )
2 1

246 1
0, = ¢, Pr 2012 g (Gr* 35 (] g, Pr® )3+23_

2=1

The constants ¢;, c¢,, and c; are
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The heat-transfer coefficient is defined as follows:
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If the wall temperature 6, is given, then we obtain
1-4-3s H 2 =l
Nu, = a, Pr®™ (Gr) 275 (1 + a,Pr® )™ o7 77+, (21)

If the thermal flux at the wall qy, is given, then we obtain

19465 1 -
Nu, = ¢37 Pro® 4=2(Gr*) 2% (1 4 a, Pr® ) o+ 7—r+t, (22)

Let us now consider specific cases, The profiles of velocity and temperature in a turbulent bound-
ary layer are usually defined in the form:

Py=n"(1—m% P,=1-—1y" (23)
The values @ =1/7 and § =4 given in [2] agree closely with the experiment where Oy = const. The values

@ =1/10, B =4, and y =1/10 given in [7] have been obtained experimentally with g, = const. Depending
on the value assumed for o, one obtains different values for s in the Blasius formula [2]:

s— 2% (24)
4o
If g =const (t =0), 6, =const (p=0), B =0,0225, @ =4/7, 8 =4, y=1/7, and s =1/4, then
7 1 1
= k=" r=-—. 25
ST 2° "7 75 #)
The solution (17} with (25) is obviously identical to that in [2] for a constant wall temperature.
If g =const (t =0), gy =const (r =0), B =0.0225, ¢ =1/7,8=4, vy =1/7, and s = 1/4, then
5 3 1
=— k== =, 26
"= 7 PTT (26)

The solution (19) with (26) is obviously identical to that in [1] for a constant thermal flux. If g~x
and Gy = const, then (12) and (19) yield the solution given in [5].

It follows from (12) thatp =0 if

1 ++¢—2s
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If condition (27) is not satisfied, then 6w — < at x — 0 and, therefore, such solutions apply to a boundary
layer with a positive initial thickness. After comparing this solution with the test results in {6, 7] for 6,
= const and ¢, = const, one may conclude that they agree when

at 8, = const;

Ra> 10
£ 1 {28)

13
Ra 0% at ¢, = const,
where Ra = Gr Pr; Ra* = Gr* Pr. Such values of the Rayleigh number correspond to a fully developed tur-
bulent flow mode.

Obviously, for lower values of the Rayleigh number the procedure can be modified, and for a small
x one must apply solutions which have been obtained for laminar flow, with this procedure then extended
beyond a certain point where (28) is true according to the solution for a turbulent bowndary layer of a non~
zero initial thickness. The structure of our solution here indicates that formulas (12) are based on the
assumption of (7), (9), and (11) or (7), (9), and (1L0) being valid. If there exists a solution in a power or
exponential form, therefore, then a sufficient condition for the feasibility of closing system (5) and ob-
taining the values of coefficients Uy, Oy, and 64(qy) in (7) is that the Reynolds relation (11) hold true for at
least one point, The solution obtained here is also applicable to values of the Rayleigh number below those
stipulated in (28) but, in order that it agree with experiments, parameters s and B in the Blasius formula
(9) must be determined according to the procedure in [8].

An analogous solution can be obtained for a boundary layer with compound convection.
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NOTATION

x,y are the coordinates referred to the generatrix of the body surface;
u, v are the velocity components along x and y, respectively;
p is the density;

c is the specific heat at constant pressure;

v is the kinematic viscosity;

0w is the temperature at the wall;

Qw is the thermal flux at the wall;

Ty 1s the friction stress at the wall;

g is the acceleration of gravity;

B is the thermal expansivity;

Pr is the Prandtl number;

Gr  is the Grashof number;

Ra is the Rayleigh number;

Nu is the Nusselt number,
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